ИНТЕГРАЛЬНЫЕ ПРЕДСТАВЛЕНИЯ И СИСТЕМА ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ГИПЕРГЕОМЕТРИЧЕСКОГО ТИПА В ЧАСТНЫХ ПРОИЗВОДНЫХ ЧЕТВЕРТОГО ПОРЯДКА ДЛЯ ФУНКЦИИ 2;2;2 

Полная информация

Аннотации


  • Ўзбек

    Ushbu maqolada ikki o‘zgaruvchili, to‘rtinchi tartibli F02;3;2;3;2  x, y Kampe de Feriyet funksiyasining integral ko‘rinishlari va bu funksiya qanoatlantiruvchi xususiy hosilali to‘rtinchi tartibli differensial tenglama sistemasi tuzilgan.

    Ключевые слова: #Ko‘p o‘zgaruvchili gipergeometrik funksiyalar #integral ko‘rinishlar

  • Русский

    В этой статье изучаются свойства функции Кампе де Фериет от двух аргументов четвертого порядка 2;2;2 
    0;3;3
    F x, y . Доказаны интегральные представления и система дифференциальных уравнений в частных производных гипергеометрического типа, которую удовлетворяет указанная функция.

    Ключевые слова: #Ko‘p o‘zgaruvchili gipergeometrik funksiyalar #integral ko‘rinishlar

  • English

    This article studies the properties of the Kampe de Feriet function F02;3;2;3;2 ( x, y) of two fourth-order arguments.
    Integral representations and a system of differential equations in partial derivatives of hypergeometric type, which is satisfied by the indicated function, are proved.
     

    Ключевые слова: #Ko‘p o‘zgaruvchili gipergeometrik funksiyalar #integral ko‘rinishlar

Просмотреть документ онлайн


В ожидании

Список литературы


Название ссылки

1

1. P. Appell and Kampeґ de Feґriets, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d’Hermite, Gauthier - Villars, Paris, 1926.

2

2. J. Barros-Neto and I.M. Gelfand, Fundamental solutions for the Tricomi operator,Duke Math. J. 98(3) (1999), 465-483.

3

3. J. Barros-Neto and I.M. Gelfand, Fundamental solutions for the Tricomi operator II, Duke Math. J. 111(3) (2002), 561-584.

4

4. J. Barros-Neto and I.M. Gelfand, Fundamental solutions for the Tricomi operator III, Duke Math. J. 128(1) (2005), 119-140.

5

5. L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958.

6

6. A. Erde’lyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill Book Company, New York, Toronto and London, 1953.

7

7. F.I. Frankl, Selected Works in Gas Dynamics, Nauka, Moscow, 1973.

8

8. A.J. Fryant, Growth and complete sequences of generalized bi-axially symmetric potentials, J. Differential Equations 31(2) (1979), 155-164.

9

9. Junesang Choi, Anvar Hasanov and Mamasali Turaev, Linear independent solutions for the hypergeometric Exton function, Honam Mathematical J. 33 (2011), No. 2, pp. 223-229.

10

10. A. Hasanov, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations 52(8) (2007), 673-683.

11

11. A. Hasanov, Some solutions of generalized Rassias’s equation, Intern. J. Appl. Math. Stat. 8(M07) (2007), 20-30.

12

12. A. Hasanov, The solution of the Cauchy problem for generalized Euler-Poisson- Darboux equation. Intern. J. Appl. Math. Stat. 8 (M07) (2007), 30-44.

13

13. A. Hasanov, Fundamental solutions for degenerated elliptic equation with two perpendicular lines of degeneration. Intern. J. Appl. Math. Stat. 13(8) (2008), 41-49.

14

14. A. Hasanov and E.T. Karimov, Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients. Appl. Math. Letters 22 (2009), 1828-1832.

15

15. Hasanov, J.M. Rassias , and M. Turaev, Fundamental solution for the gen- eralized Elliptic Gellerstedt Equation, Book: "Functional Equations, Difference Inequalities and ULAM Stability Notions Nova Science Publishers Inc. NY, USA, 6 (2010), 73-83.

16

16. Anvar Hasanov, Rakhila B. Seilkhanova and Roza D. Seilova, Linearly independent solutions of the system of hypergeometric Exton function, Contemporary Analysis and Applied Mathematics Vol.3, No.2, 289-292, 2015

17

17. G. Lohofer, Theory of an electro-magnetically deviated metal sphere. 1: Absorbed power, SIAM J. Appl. Math. 49 (1989), 567-581.

18

18. A.W. Niukkanen. Generalized hyper-geometric series arising in physical and quantum chemical applications, J. Phys. A: Math. Gen. 16 (1983) 1813-1825.

19

19. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hyper-geometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1985.

20

20. R.J. Weinacht, Fundamental solutions for a class of singular equations, Contrib. Differential Equations 3 (1964), 43-55.

21

21. A. Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc. 63 (1946), 342-354.

Количество просмотров: 390
Номер выпуска: 2022-4
Дата публикации: 08-11-2022
Дата создание в систему UzSCI: 09-11-2022