ИНТЕГРАЛЬНЫЕ ПРЕДСТАВЛЕНИЯ И СИСТЕМА ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ГИПЕРГЕОМЕТРИЧЕСКОГО ТИПА В ЧАСТНЫХ ПРОИЗВОДНЫХ ЧЕТВЕРТОГО ПОРЯДКА ДЛЯ ФУНКЦИИ 2;2;2
Аннотации
-
Ўзбек
Ushbu maqolada ikki o‘zgaruvchili, to‘rtinchi tartibli F02;3;2;3;2 x, y Kampe de Feriyet funksiyasining integral ko‘rinishlari va bu funksiya qanoatlantiruvchi xususiy hosilali to‘rtinchi tartibli differensial tenglama sistemasi tuzilgan.
Ключевые слова: #Ko‘p o‘zgaruvchili gipergeometrik funksiyalar #integral ko‘rinishlar
-
Русский
В этой статье изучаются свойства функции Кампе де Фериет от двух аргументов четвертого порядка 2;2;2
0;3;3
F x, y . Доказаны интегральные представления и система дифференциальных уравнений в частных производных гипергеометрического типа, которую удовлетворяет указанная функция.Ключевые слова: #Ko‘p o‘zgaruvchili gipergeometrik funksiyalar #integral ko‘rinishlar
-
English
This article studies the properties of the Kampe de Feriet function F02;3;2;3;2 ( x, y) of two fourth-order arguments.
Integral representations and a system of differential equations in partial derivatives of hypergeometric type, which is satisfied by the indicated function, are proved.
Ключевые слова: #Ko‘p o‘zgaruvchili gipergeometrik funksiyalar #integral ko‘rinishlar
Просмотреть документ онлайн
Список литературы
№ | Название ссылки |
---|---|
1 |
1. P. Appell and Kampeґ de Feґriets, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d’Hermite, Gauthier - Villars, Paris, 1926. |
2 |
2. J. Barros-Neto and I.M. Gelfand, Fundamental solutions for the Tricomi operator,Duke Math. J. 98(3) (1999), 465-483. |
3 |
3. J. Barros-Neto and I.M. Gelfand, Fundamental solutions for the Tricomi operator II, Duke Math. J. 111(3) (2002), 561-584. |
4 |
4. J. Barros-Neto and I.M. Gelfand, Fundamental solutions for the Tricomi operator III, Duke Math. J. 128(1) (2005), 119-140. |
5 |
5. L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958. |
6 |
6. A. Erde’lyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill Book Company, New York, Toronto and London, 1953. |
7 |
7. F.I. Frankl, Selected Works in Gas Dynamics, Nauka, Moscow, 1973. |
8 |
8. A.J. Fryant, Growth and complete sequences of generalized bi-axially symmetric potentials, J. Differential Equations 31(2) (1979), 155-164. |
9 |
9. Junesang Choi, Anvar Hasanov and Mamasali Turaev, Linear independent solutions for the hypergeometric Exton function, Honam Mathematical J. 33 (2011), No. 2, pp. 223-229. |
10 |
10. A. Hasanov, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations 52(8) (2007), 673-683. |
11 |
11. A. Hasanov, Some solutions of generalized Rassias’s equation, Intern. J. Appl. Math. Stat. 8(M07) (2007), 20-30. |
12 |
12. A. Hasanov, The solution of the Cauchy problem for generalized Euler-Poisson- Darboux equation. Intern. J. Appl. Math. Stat. 8 (M07) (2007), 30-44. |
13 |
13. A. Hasanov, Fundamental solutions for degenerated elliptic equation with two perpendicular lines of degeneration. Intern. J. Appl. Math. Stat. 13(8) (2008), 41-49. |
14 |
14. A. Hasanov and E.T. Karimov, Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients. Appl. Math. Letters 22 (2009), 1828-1832. |
15 |
15. Hasanov, J.M. Rassias , and M. Turaev, Fundamental solution for the gen- eralized Elliptic Gellerstedt Equation, Book: "Functional Equations, Difference Inequalities and ULAM Stability Notions Nova Science Publishers Inc. NY, USA, 6 (2010), 73-83. |
16 |
16. Anvar Hasanov, Rakhila B. Seilkhanova and Roza D. Seilova, Linearly independent solutions of the system of hypergeometric Exton function, Contemporary Analysis and Applied Mathematics Vol.3, No.2, 289-292, 2015 |
17 |
17. G. Lohofer, Theory of an electro-magnetically deviated metal sphere. 1: Absorbed power, SIAM J. Appl. Math. 49 (1989), 567-581. |
18 |
18. A.W. Niukkanen. Generalized hyper-geometric series arising in physical and quantum chemical applications, J. Phys. A: Math. Gen. 16 (1983) 1813-1825. |
19 |
19. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hyper-geometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1985. |
20 |
20. R.J. Weinacht, Fundamental solutions for a class of singular equations, Contrib. Differential Equations 3 (1964), 43-55. |
21 |
21. A. Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc. 63 (1946), 342-354. |